Growth and Spectroscopy of Semiconductor Quantum Dots

Jan Gaj

Physics Department, Warsaw University, Warsaw, Poland

The talk will be addressed to general public, including high school students. Semiconductor quantum dots attract a growing attention, as they can be applied in emerging new fields related to information technologies: quantum cryptography and quantum computing. A single semiconductor quantum dot approaches the ultimate limit of information storage density.

After a short motivation part, growth of semiconductor quantum dots by molecular beam epitaxy (MBE) will be described, in particular, spontaneous formation of self-assembled quantum dot systems. Basic characterization methods will be presented, including in-situ electron diffraction, atomic force microscopy, and high resolution electron transmission microscopy.

Then optical experiments will be discussed: how we select a single quantum dot from a dense ensemble, and use light to write information in the dot. Various experimental techniques will be described: from simple microphotoluminescence measurements to various time- and polarization-resolved experiments, including correlated photon counting. The experiments involve magnetic fields and low temperatures, as well as tunable laser providing ultra-short femtosecond light pulses. These advanced experimental tools allow us to study the evolution of the information recorded in a quantum dot, under influence of various perturbations, including in-plane anisotropy of quantum dots, electric and magnetic fields, etc. Finally, read-out of the information from the quantum dot will be described.